PRELIMINARY NOTES

BBA 71011

Separation by density gradient centrifugation of two types of membranes from spheroplast membrane of Escherichia coli K12

The surface layer of Gram-negative bacteria has been known to consist mainly of three layers, that is, a cytoplasmic membrane, a mucocomplex layer and an outer membrane of cell wall¹. Spheroplasts, which were formed by the action of lysozyme (EC 3.2.1.17), still have double membranes which correspond to the outer and cytoplasmic membranes of their envelope². Spheroplast membranes obtained by osmotic shock of the spheroplasts, have been thought to be a mixture of outer and cytoplasmic membranes. We have shown that membrane preparations of *Bacillus megaterium* could be separated into their three subfractions by the sucrose-density gradient centrifugation^{3,4}. The procedure was applied to *Escherichia coli*. In this report, a separation of outer membrane from cytoplasmic membrane in *E. coli* is presented.

The cells of $E.\ coli\ Ki2$ were grown in Fraser and Jerrel's medium, harvested at the middle of exponential phase and washed with distilled water. The

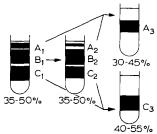


Fig. 1. Schematic representation of separation of membranes by sucrose-density gradient centrifugation. Sucrose solutions of the following linear density gradients were prepared in 6-ml cellulose tubes; (1) 4.4 ml of o-30% sucrose on 0.2 ml of 50% sucrose (SDG-I), (2) 4.6 ml of 35-50% sucrose (SDG-2), (3) 4.6 ml of 30-45% sucrose (SDG-3), (4) 4.6 ml of 40-55% sucrose (SDG-4). The membrane fractions obtained by an osmotic shock of spheroplasts were homogenized. The membranous preparation (3.6 ml containing about 120 mg membranes) was layered onto SDG-1 in 3 tubes. After centrifugation in an RPS 40 roter (swinging type) of Hitachi 40p Ultracentrifuge at $140000 \times g$ for 2 h, membranous fractions were recovered as precipitates. The precipitate was diluted with water to make the sucrose concentration less than 35% and layered onto SDG-2 in 6 tubes. Centrifugation at 140000 \times g for 4 h yielded visible bands A_1 , B_1 and C_1 . These three bands were collected by means of a J-shaped pipette. The fractions were diluted with distilled water and centrifuged at 140000 $\times g$ for 1 h. The precipitates were homogenized in distilled water. The homogenate from band B_1 was then layered onto SDG-2 in 3 tubes and centrifuged at $140000 \times g$ for 4 h. Bands A_2 , B_2 and C_2 were obtained. Then A_2 was mixed with A_1 and C_2 was mixed with C_1 . The mixture of A_1 and A_2 was layered onto SDG-3 (3 tubes) and the mixture of C_1 and C_2 onto SDG-4 (3 tubes). These tubes were centrifuged at $140000 \times g$ for 4 h. From the mixture of A_1 and A_2 , a single band, A_3 , was obtained from the mixture of C_1 and C_2 . Density equilibrium was reached within 4 h in all cases and the gradient pattern was not altered after a C_1 postrifugation. These surfaces are the contribution. all cases and the gradient pattern was not altered after a 7-h centrifugation. These purified bands A₃, B₂ and C₃ were collected by means of a J-shaped pipette and used for chemical, biochemical and electron-microscopic observations.

160 PRELIMINARY NOTES

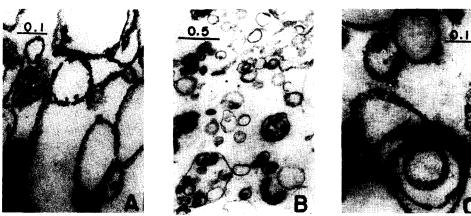
spheroplasts were prepared by the method of Repaske⁶. The spheroplasts were collected by centrifugation, burst at 4° in a 5 mM MgCl₂ solution containing a trace amount of deoxyribonuclease (EC 2.7.7.16) and washed twice with cold 5 mM MgCl₂ solution. The crude membrane was collected by centrifugation at $25000 \times g$ for 20 min, suspended in 3 mM EDTA (pH 7.0) and dialysed against 3 mM EDTA (pH 7.0) at 4° overnight. Dialysed preparations were centrifuged at 60000 × g for I h. The precipitates were suspended in distilled water and applied to sucrose for density gradient centrifugation. The procedure and results of subfractionation of dialysed membranes by the density gradient centrifugation are shown in Fig. 1. Thus bands A₃, B₂ and C₃ were obtained. The chemical composition of bands A₃, B₂ and C₃ is shown in Table I. Proteins were equally distributed in these fractions. However, lipid content was much higher in band A₃ and lower in band C₃ than in band B₂. On the other hand, carbohydrate was concentrated in band C3. A ratio of carbohydrate to protein in band C₃ was 4-5 times that in band A₃. Table II shows the distribution of enzymes and cytochromes in these fractions. ATPase (EC 3.6.1.3) and the components of the electron-transport chain were concentrated in band A₃.

TABLE I CHEMICAL COMPOSITION OF FRACTIONATED MEMBRANES Data represent mg/g whole cells.

Material*	Band A_3	Band B ₂	Band C ₃
Protein Phospholipid** Carbohydrate	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 18.9 \pm 2.9 \\ 8.3 \pm 0.8 \\ 0.67 \pm 0.13 \end{array} $	17.8 ± 0.5 3.4 ± 0.2 1.19 ± 0.12
RNA	0.24 ± 0.01 0.82 ± 0.01	1.20 ± 0.16	0.58 ± 0.01

^{*} Each was determined as described previously³.

TABLE II DISTRIBUTION OF ENZYMES AND CYTOCHROMES* AMONG FRACTIONATED MEMBRANES


	Activity (µmoles/mg protein per h, 20°)		
	Band A_3	Band B ₂	Band C ₃
ATPase**	2.7 ± 0.3	1.5 ± 0.6	<0.3
NADH dehydrogenase	1.09 ± 0.01	0.88 ± 0.40	0.50 🚉 0.0
Succinate dehydrogenase	0.38 ± 0.01	0.37 ± 0.08	<0.02
Succinate dehydrogenase Cytochrome a^{***}	0.07 ± 0.01	0.03 ± 0.01	< 0.01
Cytochrome b***	0.18 0.01	0.09 ± 0.01	< 0.03

^{**} Phospholipid = lipid-phosphorus \times 25.5.

 $^{^\}star$ Each was determined as described previously³. ** Assay was at 35°. *** Amounts of cytochromes a and b were determined from the difference spectra (reduced with dithionite minus untreated) at 444 mµ and 426 mµ which correspond to the Soret bands of cytochromes a and b in E. coli K12, respectively, and are expressed as the absorbance at $444 \text{ m}\mu$ and 426 m μ per mg protein, respectively.

161 PRELIMINARY NOTES

Typical electron micrographs of each thin section of these fractions are shown in Fig. 2. Band A₃ was comprised largely of vesicles with a width of about 75 Å unit membrane. Band C₃, which also showed a unit membrane structure of a width almost equal to band A₃, gave features very different from those of band A₃, that is, a somewhat complex coiled structure which was easily stained by alkaline lead hydroxide. Recently Birdsell and Cota-Robles² have shown that outer membrane of E. coli could be broken by EDTA and formed the complex coiled structure during spheroplast formation. Results of chemical, enzymatic and electron-microscopic observations presented in this paper suggest that band C₃, which is comprised of complex coiled membranes, is mainly composed of the components derived from the outer

Flg. 2. Electron micrographs of fractionated membranes. A. Band A₃. B. Band B₂. C. Band C₃. Electron-microscopic studies were performed as described previously³.

membrane of the cell wall. On the other hand, cytoplasmic membranes of spheroplasts of E. coli seemed to be separated from outer membranes into band A₃ by the density gradient centrifugation. Band B2 might be a mixture of outer and cytoplasmic membranes and non-membranous materials.

The authors express their thanks to Dr. S. Fukui for his interest.

The Institute of Applied Microbiology, University of Tokyo, Tokyo (Japan)

TAKASHI MIURA Shoji Mizushima

- I R. G. E. MURRAY, P. STEED AND H. E. ELSON, Can. J. Microbiol., 11 (1965) 547.
- 2 D. C. Birdsell and E. H. Cota-Robles, J. Bacteriol., 93 (1967) 427.
- S. MIZUSHIMA, M. ISHIDA AND T. MIURA, J. Biochem., 60 (1966) 256.
 S. MIZUSHIMA, T. MIURA AND M. ISHIDA, J. Biochem., 61 (1967) 146.
- 5 D. FRASER AND E. A. JERREL, J. Biol. Chem., 205 (1953) 291.
- 6 R. REPASKE, Biochim. Biophys. Acta, 22 (1956) 189.

Received October 2nd, 1967